An explicit solution for a two-phase Stefan problem with a similarity exponential heat sources

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newton-Product integration for a Two-phase Stefan problem with Kinetics

We reduce the two phase Stefan problem with kinetic to a system of nonlinear Volterra integral equations of second kind and apply Newton's method to linearize it. We found product integration solution of the linear form. Sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

متن کامل

Nonlinear Two-Phase Stefan Problem

In this paper we consider a nonlinear two-phase Stefan problem in one-dimensional space. The problem is mapped into a nonlinear Volterra integral equation for the free boundary.

متن کامل

newton-product integration for a two-phase stefan problem with kinetics

we reduce the two phase stefan problem with kinetic to a system of nonlinear volterra integral equations of second kind and apply newton's method to linearize it. we found product integration solution of the linear form. sufficient conditions for convergence of the numerical method are given and their applicability is illustrated with an example.

متن کامل

nonlinear two-phase stefan problem

in this paper we consider a nonlinear two-phase stefan problem in one-dimensional space. the problem is mapped into a nonlinear volterra integral equation for the free boundary.

متن کامل

Newton-Product Integration for a Stefan Problem with Kinetics

Stefan problem with kinetics is reduced to a system of nonlinear Volterra integral equations of second kind and Newton's method is applied to linearize it. Product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. An example is provided to illustrated the applicability of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MAT Serie A

سال: 2004

ISSN: 1515-4904

DOI: 10.26422/mat.a.2004.8.bri